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A study is made of the incoherent scattering of cold neutrons by a homogeneously oriented nematic 
liquid crystal composed of anisotropic molecules which show fluctuations in orientation and are so 
distributed that the medium possesses a unique isotropic axis. It is believed that the main features of 
several scattering experiments on homogeneously oriented nematic liquid crystals may be understood 
on the basis of the formulae presented, whose usefulness is discussed in terms of both bad and good- 
resolution measurements. 

1. Introduction 

A theoretical study is made of the incoherent scattering 
of cold neutrons by a liquid composed of anisotropic 
particles which show fluctuations in orientation and are 
so distributed that the medium possesses a unique iso- 
tropic axis. This scheme applies to homogeneously 
oriented nematic liquid crystals. In practice nematic 
liquids can readily be homogeneously oriented. Thin 
films between glass plates can be oriented by boundary 
effects, without external magnetic or electric fields. By 
suitable surface treatment (Chatelain, 1943), it is 
possible to obtain two different homogeneous orienta- 
tions. Rubbing of the surface of the glass in a given 
direction leads to 'planar layers' in which the optical 
axis lies in the plane of the film and parallel to the 
rubbing direction; 'erected layers' in which the optical 
axis is perpendicular to the plane of the film, are ob- 
tained by careful cleaning of the surfaces, e.g. with 
sulphuric acid/bichromate. The study of the behaviour 
of thin sheets of homogeneously oriented nematic 
liquid crystals sandwiched between glass plates, in the 
absence of any external magnetic or electric field, is 
very important from many theoretical and practical 
standpoints. 

From a general point of view, the radiation scat- 
tering offers the most direct determination of both the 
static and the dynamic structure of liquids. In liquid 
crystals the radiation, considered as a probe, should be 
able to couple to motion of molecules directly or in- 
directly. Both X-rays and light interact with electrons. 
In a nematic liquid crystal, which is an insulating li- 
quid, electrons can be regarded as firmly attached to 
individual atoms so that the electromagnetic wave 
couples to motions of atoms indirectly via atomic 
electrons. On the other hand, neutrons interact pri- 
marily with the nucleus of an atom and thus are able to 
couple to the atomic or molecular motion directly. 

In order to understand what types of fluctuations a 
given radiation can effectively measure let us assess 
briefly the main attributes of X-ray, light and neutron- 
scattering methods in nematic liquid crystals. 

In a radiation-scattering process there are two basic 
parameters: the momentum transfer hq and the energy 
transfer hco to the system. We have: 

q=K~-K~ (1) 

h~o = Ei - Es (2) 

where the wave-vector and the energies of the incident 
and scattered waves are indicated respectively by 
(K~, E~) and (K,, E0. 

For electromagnetic waves the energy and the wave 
vector are related by: 

e = i h K  (3) 
and for neutrons: 

E=hZK2/2m . (4) 

Because of relationships (3) and (4), the momentum 
transfer hq and the energy transfer h~o in (3) and (4) 
are related. 

Now for electromagnetic waves, the magnitude of 
the momentum transfer vector q [equation (1)] usually 
reduces to : 

q = 2nK~ sin q~/2 (5) 

where q~ is the scattering angle and n the index of re- 
fraction of the medium. 

Equation (2) can be rewritten as: 

q2= 2m h2 (K~ + K ] -  2K, K~ cos ¢p). (6) 

Equation (5) shows that measurement at a constant 
angle does give a constant q measurement. The scat- 
tered intensity at constant momentum transfer q gives 
the qth Fourier component of the spatial correlation 
between atoms in the system. Such measurements are 
useful in obtaining the static structure factor of a 
nematic liquid crystal. This is an advantage of X-ray 
and light scattering over neutrons. In effect equation 
(6), valid for neutron scattering, shows that if one fixes 
the scattering angle q~ and measures the energy distribu- 
tion, then different energy transfer he) would corres- 
pont to different momentum transfer hq. If one were 
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able to analyze the energy distribution at a con- 
stant q, the intensity at a particular energy transfer 
h~ gives the ~,~th Fourier component of the time corre- 
lation for the fluctuation with wave vector q. This latter 
quantity is useful for the dynamic structure-factor 
determination. Anyhow Brockhouse (1958) has de- 
monstrated the possibility of programming the neutron 
spectrometer in such a way as to obtain a constant q, 
so that one can obtain a neutron intensity distribution 
at different hco for a fixed q. 

Then the difference between neutrons, X-ray and 
light probing methods of nematic liquid crystals re- 
duces essentially to the different range of probing dis- 
tances within the liquid crystal and the different range 
of time intervals of probing. 

Neutrons are capable of probing the liquid crystal 
structure within a distance ofq - ~  10 -8 cm and within 
a time intervals of ~o -~~ 10 -13 s. Then cold-neutron 
scattering provides a direct mean of studying the dy- 
namic behaviour of a single molecule in a homoge- 
neously oriented nematic liquid crystal showing orien- 
tational fluctuations. 

For X-rays, q- ~ is again of the order of 10 -8 cm, but 
the energy exchanged with the liquid-crystal mol- 
ecules during scattering is negligible. Therefore X-ray 
studies of homogeneously oriented nematic liquid 
crystals yield no precise information about the libra- 
tional and rotational motions of molecules. However 
structure-factor measurements can be made by meas- 
uring the integrated intensity at constant q. 

Light, for example a red light from a helium-neon 
gas laser, is capable of probing the liquid-crystal 
structure within a distance of q - 1 ~ 5 .  10 -6 cm and 
within a time interval of ~ - t ~ 2 . 1 0  -15 s. Then light 
scattering is only suited for the study of long-range 
fluctuations in nematic liquid crystals. 

In conclusion, neutron scattering in homogeneously 
oriented nematic liquid crystals is suited for the study 
of short-range fluctuations and single-molecule be- 
haviour, while both X-ray and light scattering from a 
homogeneously oriented nematic liquid crystal con- 
tain only the coherent scattering and therefore do not 
give information on the single-particle motion. 

2. Structure of the scattering medium 

We study the behaviour of thin sheets of homogeneously 
oriented nematic liquid crystals in the absence of any 
external magnetic or electric field. 

The ordering effect is exclusively due to boundary 
effects of the glass plates sandwiching the nematic 
liquid crystal. The homogeneously oriented nematic 
liquid crystal is composed of anisotropic particles 
which show fluctuations in orientation and are so 
distributed that the medium possesses a unique isotrop- 
ic axis. Each molecule is visualized as a line with 
protons hooked on at selected positions. 

We contemplate the case in which the orientational 
fluctuations are far larger than density fluctuations so 

that density fluctuations can be completely neglected. 
According to this assumption, a volume V will con- 
tain N molecules regularly spaced with the centre of 
mass stationary and unchanged in position with time 
so that the centre of mass of the molecules can be 
thought of as placed in a three-dimensional Bravais 
lattice. The position vector of each centre of mass is 
given with respect to some reference axes. 

The molecules assume a needle-stacked arrangement 
so that the molecular axes tend to be aligned parallel 
to one another, owing to boundary effects, along the 
unique isotropic axis labelled by the unit vector no. 
However there exist thermal orientational fluctuations 
of the molecular axes about the unique isotropic axis 
no. Each molecule is supposed to be able to perform a 
motion relative to its centre of mass, namely, libra- 
tional motion for a time v0 during which its average 
angular orientation does not change, followed by rota- 
tional motion for a time z~ during which its angular 
orientation changes. 

In all subsequent formulae the orientation ni of a 
molecule, whose long axis has unit direction n* in 
space at time t, will be defined with respect to the unit 
direction, no, of the isotropic axis as: 

ni:rdn~ -no  (7) 

where rd is the scalar distance of the scattering nucleus 
from the centre of mass, Fig. 1. 

Let n~(0), (i= 1,2 , . . . ) ,  denote the orientation of a 
particle at some initial time and n~(t) the orientation at 
some other time. 

Should the molecule contain several incoherently 
scattering nuclei at the same or at different distances 
from the centre of mass, a summation over all the 
scatterers in the molecule should be made to obtain 
the cross section per molecule. 

3. Correlation function, structure factor and scattering 
cross section 

A general theory of neutron scattering by an arbitrary 
system of particles has been given by Van Hove (1954). 
In this theory, the differential scattering cross section 
is expressed as a four-dimensional Fourier transform 
of the generalized distribution function, usually 
denoted as G(r, t). In the classical limit, the interpreta- 
tion of this function is that given an atom at the origin 
at time t=O, it defines the probability of finding an 
atom within a unit volume at the point r, and at time 
t. The atom at the position (r,t) may be the same as 
was at the origin at time t = 0, or may be another atom. 

The total scattering can be divided into a coherent 
part and an incoherent part; the former is given by the 
Fourier transform of G(r,t) and the latter by the 
Fourier transform of the self-correlation function 
Gs(r, t). 

In other words, the incoherent scattering probes the 
single-particle motion and the coherent scattering the 
collective motion of atoms. Since we are essentially 
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interested in the single-particle motion, we will use a 
self-correlation function F,(n, t )  depending on the 
orientation vector n defined by equation (7) and a time 
interval t for describing the behaviour of  a given mol- 
ecule, whose centre of mass is stationary, in a liquid 
composed of anisotropic particles which show fluctua- 
tions in orientation and are so distributed that the 
medium possesses a unique isotropic axis. In other 
words for describing the correlation between orienta- 
tions of one and the same particle at different times we 
consider the function: 

F,(n, t )=N-l(  dn'6(n+n,(O)-n').6(n'-nt(t))') l=1 
(8) 

where n~(0) and nt(t) are orientation vectors, considered 
as Heisenberg observables, of t h e / t h  molecule at time 
zero and at time t. 

The thermal average of an operator  U is defined as: 

( U ) = X r  {U exp (-flH)}/Tr {exp ( - f i l l ) } .  (9) 

The function F~(n, t) as defined in (8) can be called the 
self-or ientat ion-t ime correlation function and is in 
general a complex function: 

[F~(n,t)l*=F~(-n,-t)¢F~(n,t). (10) 

In effect n,(0) and n~(t) regarded as Heisenberg 
operators do not in general commute  and therefore the 
order of the two delta functions in (8) has to be main- 
tained. 

Nematic liquid crystals may be considered classical 
as long as the thermal de Broglie wavelength A--- 
h/(2rrMKnT) l/z is smaller than the interparticle dis- 
tance; then for times t larger than the Debye relaxation 
time, the function F~(n, t) is real, positive and even in t. 

The remaining part  of this section is organized 
around measurements of  the dependence upon wave 
vector q and frequency ~,J of the self-orientational 
structure factor S~(q, co) for the reasons that:  (i) 
S~(q,o)) is directly obtainable from scattering experi- 
ments, and (ii) since S~(q,o)) is defined as the Fourier 
transform of the orientat ion-and-t ime-dependent  func- 
tion F,(n, t )  describing the correlation of a particle 
with itself, its measurement  provides one with a great 
deal of useful information about  the microscopic 
properties of a molecule of a homogeneously oriented 
nematic liquid crystal. 

In effect it is useful to define the following two 
Fourier transforms of the or ienta t ion- t ime self-corre- 
lation function F~(n,t): 

!,(q, t) = ! exp (iq.  n)F~(n, t)dn 

N 
= NI l~  t :  (exp [ -  iq. n,(0)] exp [iq. n,(t 1]) 

1 I ÷ "  S , (q . t )=  2re exp (-i~ot)L(q,t)dt. -co 

(l l)  

(12) 

l~(q, t) is called the ' intermediate scattering function',  a 
name derived from its appearance in the scattering 
cross section. The second line of (11) follows from 
using definition (8) for F~(n, t). The physical meaning of 
Is(q,t) is that it describes the time behaviour of a 
single-particle orientation oscillation of wave vector 
q in an N-particle system. S~(q,t) is then the spectral 
density of the orientation oscillation of this single 
particle. 

From the definition of S~(q,t) and as a consequence 
of the fact that the system is in thermal equilibrium it 
can be shown that one important  property of Ss(q, t) is 
the so-called detail balance condition: 

S~(-q, -~o) = exp (-he)/KsT)S~(q, oJ). (13) 

In the classical limit when F~(n, t) is an even function of 
t, S~(q,o)) becomes even in o2. From equation (13) it is 
seen that the classical limit corresponds to the high- 
temperature limit KBT>>hc~, when the exponential 
factor in the right-hand side of (13) approaches unity. 

We have: 

Now consider a neutron beam focused upon a 
macroscopically small volume V. We can consider 
each of the individual particles in the volume V to be 
the source of a spherical 'scattered wave'. Although 
the amplitude of the scattered wave originating at a 
specific particle will be proport ional  to the sum of the 
amplitudes of the original incident wave plus that  of 
the waves scattered from other particles, we can 
neglect the latter since it is small compared to the in- 
cident field. Neglecting this multiple scattering is 
equivalent to making the Born approximation.  If the 
dimensions of  the illuminated volume V are small 
compared to the distance r to the observation point, 
then the position vectors of the particles are negligible 
with respect to r. Fur thermore  we suppose that  the 
isotopic states are randomly distributed among atoms 
at various positions. 

r d r l i  ° 

C.G. n ~ ~  

S.N. (n' 

Fig. !. Illustration of a scattering nucleus (S.N.), sitting at a 
distance r,~ from the centre of gravity (C.G.) of the molecule, 
relative to the origin O. The origin O is placed at a unit dis- 
tance (In0] = 1) from C.G. o11 a straight line passing through 
C.G. 
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Then we have the following t ime-dependent inco- 
herent-scattering amplitude" 

N 

f ( q , t )  = - ~ ~incoh exp [iq. n~(t)] (15) 
1=1  

and the incoherent scattered wave at the detector is 
thus" 

~u(n,t)-f(q,t) exp [i(K~. r -¢ , ) J ) ] / r  (16) 

where ~.~o, is the bound-a tom incoherent-scattering 
length of the nucleus. 

If we now perform an energy analysis of the inco- 
herent scattering wave, we should be extracting one of 
the Fourier components:  

~,(n,t),o~=f(q,e~p) exp [i(K~. r-~o/)]/r (17) 

where we first decompose 

f ( q , t ) =  ~ . f (q ,  eJp) exp (i~%t) I 
o I 
2~ j (18) 

~,), = p ,  p = integer 
2- 

and obtain : 

.f(q,~JJ,) lim 1 ci+~/2 = f(q ,  t) exp (-icoj, t)dt. (19) 
~ c o  2" - ~ / 2  

Using (18) in (16) and comparing with (17) we obtain" 

¢')t, = ~')i - r os (20) 

which in the limit r --~ oo tends to the ~o defined in (2). 
Since we are performing an energy analysis, let us 

define the double differential cross section per unit 
solid angle, per unit outgoing energy, namely:  

d 2 0 ' i n c o h  Ki [(.f*(q,~ot,)f(q,ogo)>] 
(21) 

dEde~ Ks L J h  (2~/r) ~= 

Using (19) and the stationarity of the time correla- 
tion function, it is easily shown that :  

(f*(q,c,.~p).f(q,~j,)) . . . .  = 1 l 
T d 

+r /2  

( f * ( q ,  t ) f (q,  t ) ) 
+ r / 2  

x exp ( -  i~o,t )dt .  (22) 

Then equation (21) becomes" 

d2aincoh K~ 
d-L:d~o - K ,  

1 -(q,t "( ( i~J)pt × 2 ~ h  _ ~ q T i ) } e x p  - )dt 

: a lnco  h • K, 2~z/~ ,:~ z e x p [ - i q  n,(0)] 

x exp [iq. nl(t)]) exp (-io)t)dt 

= N a i n c ° h  K , h  2rc . ~ _ ~  ( l / N )  

N 

x ~ (exp [ - i q .  n,(0)] exp [iq. n,(t)]) 
1=1 

) x exp ( - i ,  ot)dt =Na~,¢oh Kih S , (q ,~ ) ,  (23) 

where definitions (11) and (12) have been used in the 
last line. Now the main problem is to calculate aq 
explicit expression for F~(n,t) or its Fourier transform 
S~(q,eg). 

4. Explicit  expressions for the structure factor 
and the scattering cross section 

The centre of mass of each molecule remains fixed with 
time. The molecule is supposed to be able to perform 
a motion relative to its centre of mass, namely, a 
librational motion for a time r0 during which its 
average angular orientation does not change, followed 
by a rotational motion for a time 2-~ during which its 
angular orientation changes, and then repeats this sort 
of motion. 

We shall first define the following quantities: (a) 
g(n, t )  is the probabili ty of finding a molecule having 
the orientation n at time t when it is performing a 
librational motion about  an equilibrium position, 
starting from an orientation parallel to the isotropic 
axis at time t = 0; (b) starting from a librational motion 
at time t = 0, p(t) gives the probabil i ty that  the particle 
remains in the same librational state at a later t ime; 
(c) h(n,t)  is the probabili ty of finding a molecule with 
an orientation n at time t when it is performing a 
friction-damped rotation between two equilibrium 
positions starting from an orientation parallel to the 
isotropic axis a time t = 0 ;  (d) starting from a state of 
rational motion at time t=0 ,  q(t) gives the prob- 
ability that the molecule remains in the same state of 
rotational motion at a later time t; ( e ) p ( t ) - p ( t + d t ) =  
-p'(t)dt gives the probabili ty that the molecule has 
left its librational state during the time interval t and 
t+dt, and has gone into the rotational state; and ( f )  
q( t ) -q ( t+dt )=-q ' ( t )d t  gives the probabili ty that 
the molecule has left its rotational state during the 
time interval t and t + d t ,  and has gone into the libra- 
tional state. 

In order to obtain F~(n,t) and S~(q,t) let us divide 
the motion into steps numbering 0,1,2 . . . . .  2 N , . . .  
Starting from an orientation parallel to the isotropic 
axis where we assume that the molecule is making a 
librational motion, it could have arrived at the orienta- 
tion n in time t after making 0, 1,2 . . . .  steps. The 
zeroth step corresponds to the librational motion, step 
1 to the succeding rotational motion, step 2 again to 
librational motion, step 3 to the rotational motion and 
so on. Then F~(n,t) is given by 

F~(n, t )= ~ Fi(n,t) t > 0 .  (24) 
l 

where the various Fj's are given by: 
Step 0, 

F0(n, t ) =  g(n,t )p(t) (25) 

Step 1, 

f0d,   f~(n, t) = - dnxq( t -  q) 

x h(n- nl, t -/i)P'(/l). g(n,, tl) 
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Step 2, 

10d,, f';d,, I Fz(n, t ) = ( -  1 )2 dnednlp( t _ t2 ) 

x g(n - nz, t - tz) q'(t2 - t~)h(n2 - nl, t2 - h) 
× p'(q)g(n,, h) 

Step 2N, 

f' Fz,,(n, t) ( I)2N ~t2N 
= -- 0 dt2u ,!0 dt2N-I . . . .  

x S ~ d t t S . . . S  dn2Ndn2N-t. . .dn, 

× p(t- /2N)g(n--  nzu, t-- tzu) q'(tzN -- tzN-1) 

x h ( n z N  - -  n2x _ 1, 12N -- t2x - ! 

. . . p ' ( t l ) g ( n l , t l ) .  

In writing expression (25) it has been supposed that 
when the particle makes a transition from one step 
into the other, say from a librational motion into a 
rotational motion or vice versa, there is no correlation 
between the motions in the two steps. By substituting 
(25) in (24), it is possible in principle to calculate 
F,(n,t).  However we are interested in S~(q,t), to say 
the Fourier transform of the F[s. Write the integral: 

Io dt f dnF2N(n,t)exp [i(q. n -oJ t ) ]  (26) 

a s  

10d-,+ !o l o d -  • 
x p(rzN + t) g(d. zN + 1, ru,. + t) 

× q'(rzN)h(~2N, rzN).. .  

X p'(rt)g(~t, 'q) exp [i(q. n--(ot)],  (27) 

where the following change of variable for the time 
integrals has been made" 

[ - - I 2 N = T 2 N + I  , 

I2N - -  t 2 ~ -  1 = l ' 2 X  • • • t 2  - -  I 1  = T 2  ' (28) 

/1  = T I  • 

A similar change of variables for the orientation 
integrals has also been made. Hence 

fod t  f dn exp [i(q . n-o)t)]F2N(n,t) 

= d~ exp [i(q. ~-cor)]p(z)g(~, r) 

x - dr '  d~' exp [i(q. { ' -o . )r ' ) ]p ' ( r ' )  
t 'O  

s d~" x g ( C , r ' )  . - 

x exp [i(q. ~,"-~or")]q'(r")h(~",r")} N 

= A CVD N (29) 

and similarly it can be shown that" 

lod t  f dn exp [i(q . n-o)t)]FzN+t(n,t) 

=BCN+1D N (30) 
where 

A = dn exp [i(q. n -  e)t)]p(t)g(n, t) 

B =  dn exp [i(q. n-cot)]q(t)h(n, t )  (31) 

C =  - dn exp [i(q. n -  (,)t)]p'(t)g(n, t) 

D = - dn exp [i(q. n - o t  )] q'(t )/fin, t ). 

Finally 

f~ I~ dn dt exp [i(q. n - o)t)] F,,(n, t ) 
N = 0  

O<3 O0 

=A ~ (CD) N+ BC ~ (CD) N +c .c .=  
N = O  N = O  

A + B C  
I - C D  

+ C . C .  

(32) 

where c.c. means the complex conjugate term. In 
deriving equation (32) use of identity (I0) has been 
made. In deriving (32) it has been assumed tacitly that 
at time t = 0 ,  all particles start with a librational mo- 
tion. This is not true in general and some of the par- 
ticles will start with rotational motion. In this case, 
following the same procedure as above, it can be 
shown that the corresponding expression to (32) is 
( B + A D ) / ( I - C D ) + c . c .  Hence the self-structure fac- 
tor S~(q,t) is given by: 

ro A + BC rj B+ AD 
. . . . . . . . . . . . . .  

S~(q, t ) -  to+r1 1 c D  + r 0 + r t  1 - C D  +c.c . .  
(33) 

In (33), ro / ( r0+h)  gives the fraction of particles per- 
forming a librational motion, and h / ( r o + r 0  gives the 
fraction of particles performing a rotational motion 
at time t = 0 .  We shall now assume the following forms 
for the various functions occurring in (31): 

then 

p( t )=exp  ( -  t/to), (34) 

q(t) = exp ( -  t/rt) (35) 

C =  r A ,  (36) 

D =  (lx-) - B.  (37) 

Now A and B can be written in the following form" 

A = dt exp ( -  io)t-  t/r0) dng(n, t) exp iq.  n 
0 

= dt exp ( - ia ) t - t / ro)Zv(q , t )  
o (38) 
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l I B= dt exp (-i(ot-t /r~) dnh(n,t) exp iq. 
t 0  

= dt exp (--i~ot--t/rl)Zg(q,t). 
t'O 

If we suppose that the librational motion during the 
time r0, when the molecule performs rotational oscilla- 
tions around an equilibrium direction, is very similar 
to what occurs for an atom in a solid, then the inter- 
mediate scattering function, zv(q, t), during r0 assumes 
the following expression: 

Zv(q,t)=exp {-qZ[7(O)v-~(t)v]} (40) 
where 

f;,coth ";'(t )v = (h/2Mv) /~  cos ~t 

+ i  sin ~t).f(~)v/~d~. (41) 

My is the rotational mass, f(~)v is the frequency dis- 
tribution of rotational oscillations (librational motion) 
and []=h/2KnT. The Debye-Waller factor usually 
denoted by 2Wv is defined for librationai motion by 
the equation : 

2 Wv = q2~?(O)v (42) 

and has a form similar to that encountered for solids. 
Explicit expressions for the effective rotational mass 

My have been discussed for linear and other mol- 
ecules (Sears, 1966a, 1967). In the case of linear mol- 
ecules we have: 

Mv=lqZ {t~ l(l+ l) (21+ l)j,(qrd)2} -~ -1 ~ 31 
qre ~ 2r~ 

(43) 

where I is the moment of inertia of the molecule, 
j~(qra) is a spherical Bessel function of the first kind 
and of order / and rn is the distance of the scattering 
nucleus from the centre of mass of the molecule. 

An expansion of (40) gives: 

Zv(q ,  t ) = e x p  ( - 2 Wv) 
x {l +2Wv[7(t)v/7(O)v]+...}. (44) 

The hindered rotational motion during rl when the 
molecule changes its direction in space is described by 
the general formalism developed by Sears (1966b) 
which is valid if there is no statistical correlation be- 
tween librational motion and hindered rotational mo- 
tion and if the isotropic forces acting on a molecule are 
much stronger than the anisotropic ones. We have: 

ZR(q,t)= ~ (21+ 1)jt(qra)2Ft(t), (45) 
I = 0  

where the mechanism of the rotational motion is 
hidden in the rotational relaxation functions Ft(t). 
Explicit forms for F~(t) can be calculated in a rigorous 

way for the limiting cases (i) free rotation Ftgo and 
(ii) rotational diffusion, Ftgr. Components of both 
these modes of rotational motion probably exist in a 
real nematic liquid crystal. Both these rotational mo- 
tions can be taken into account by assuming that 
during the time rl, the rotational intermediate scat- 
tering function Zg(q, t) is the result of the contribution 
of both rotational diffusion and free rotation. Ac- 
cordingly we write: 

F(I) = ~FtRo + flFtgv (46) 

where c~ and fl are two parameters determined so that: 

0 < ~ < I  and 0 < f l < l .  (47) 

Moreover we must require that when 7 = 0  then fl= 1 
and when ~= 1 then fl=0.  Therefore the two param- 
eters, a and fl, can be reduced to only one, y, by put- 
ting: 

= y  and f l = l - y  (48) 
with 

0 < y < l  . 

Equation (46) becomes: 

F(I) = yFz~o + (1 -Y)FtRF. (49) 

This procedure introduces the parameter y, which 
should be determined by studying experimentally the 
rotational relaxation functions F~(t) which contain 
components of both kinds. 

For free rotation the actual form of Ftgv is: 

1 F [ - ~ ( I +  1)] 
F i R  F - -  (½l) 

2 ~ F[½(l-m+ 1)]F[½(l+m+ 1)] + -  
~z ,,,=~ "~' [½(1- m)]! [½(l + m)]! 

× exp (-½mZt*2)M(-½,½-,½mZt *z) (50) 

where t*=t(KnT/l) l/z and M(a,b,x) is Kummer's 
confluent hypergeometric function (Abramowitz & 
Stegun, 1965), and E~=0 and 1 for l odd and even 
respectively. 

For the case of rotational diffusion, when the rota- 
tional autocorrelation function obeys a simple diffu- 
sion equation, the form of F,~o(t) is 

FtRo(t)=exp [ - - l ( l+  1)D,t] (51) 

where D, is a rotational diffusion constant. As seen 
from equation (50), the constant terms in Ft~v lead to 
functions ~u(qrd) which are: 

with 

1 ~ (2l+ 1)j,(qra) z F[½(I+ 1)] 
~u(qra) = zr-,=0 (½/)! E, (52) 

Si(2qrn) .jt( qra) 2 . . . . . . . . .  (53) 
l=0 2qra 

Si(2qra) is the sine integral function. 
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The two constituents of S~(q,t), A and B are given 
by: 

i- , i oo  

A = exp ( -  2 Wv) _1o dt 

x exp ( - i o ) t - t / r o )  [l +qZT(t)v + . . .]. (54) 

Higher terms are not included in the expansion be- 
cause they do not add to the physical clarity of the 
resulting formulas. We have: 

A = exp ( - 2 Wv) dt exp ( -  ie)t - t/to) 
o 

+ q2 exp ( -  2 Wv) exp - iu)t - t/ro)7(t)v .o dt ( 

ro h I°°dt 
= exp ( -  2 Wv) i +  i~uro + qZ exp ( - 2 Wv) 2M ,.o 

Iod¢[f(~)/~] × exp ( -  i~nt- t/to) . , . [coth fl~ cos fit 

+ i  sin ~t] 
To 

= exp ( -  2 Wv) l + kOro 

h 1 !od~[f(~)/~] + qZ exp ( - 2  Wv) -2M 2- . 

x o dt {coth fl~ [exp ( i~t )+exp ( - i ~ t ) l  

+[exp ( i ~ t ) - e x p  ( - i ~ t ) ] }  exp ( - i ~ o t - t / r o )  

T0 . . . .  
= exp ( - 2 Wv) 1 + ic,)ro 

+q2 exp ( - 2 W v )  2 

[ coth/]~ + 1 coth t iC-  1 ] 
X 

"r0. q2  
= exp ( -  2 Wv) 1 + ic,)ro + exp ( -  2 Wv) 

h d ( _  ~ ) f ( - ~ )  - 1 r0 
× 2 M  o - ¢  e- -p (2/;¢-)---i 

fod  / + .1(~) 1 ro 
¢ ex--p- (2fl~)- 1 -lSr i(,o+-¢)r0 

% ._ 
= exp ( - 2 Wv) 1 -~ kOro 

+qZ exp ( - 2 W v )  h (Io+ilO (55) 
2M 

with 

I0 = ro de --¢ exp-(2/~7) L5 1+ (,o + ~)-~-)o ~ 

Ix = _ ro l i ~ d ¢  f(~ ) 1 (v)+ ¢)ro 
-~  exp (2fl~)- 1 1 -~(io + ~)5ro z" 

(57) 

It is seen that if the Lorentz function in Io and 11 is 
small compared with the width off(,~), and iff(~) does 
not vary too rapidly within a range of ~ values corre- 
sponding to the width of the Lorentz function, we find 

Ii'~10 and we may in a first approximation neglect the 
imaginary part 11. The term Io is dominated by the 
frequency distribution f(~). If a well defined and 
narrow quasi-elastic peak is observed, then I0 may be 
approximated by the expression: 

r0 f(c,)) exp (-fl~o) 
. . . . . . . . . . . . .  

t o+r .  " (,) s infl~ (58) 

which is the 'one-phonon'  librational term. 
The constituent B is given by: 

(1 -Y)r l  
B =  ~(qn) i-q- korx 

, . ,  ,z 1 + q l ( l +  l )Dr- io) r l  
+ y h  ~.. (2l+ 1ult qra) -;. . . . . . . . . . . . . .  

l=t " II + r l l ( l+  1)Dr]'-+~,)Zr~ 

( 1 - y )  ~ 
+ . . . . . . .  ~ (2l+ 1)jt(qra) z 

1 = 1  

~ F [ ½ ( l - m +  1)]F[½(l+m+ I)] 
x ~_g=~ [½(/-ii;ti]! [½Q-+ m)]-i " 

I °~ ( _ _ t . ~ . ! m z K s r , z ]  x2  ° M 2,2,2 I " ]  

x exp (-.~.m 2 -KIT - t z - t / q  - io)t)dt . (59) 

After some manipulations on the integral of the last 
term of the preceding equation, that term reduces to: 

co  

(1 - - f )  ~ (2l+ l)j,(qr)Z~m' r[½(l-m+ . . . . . . . . . . . . . . . . . . . . .  1)]F[½(l+m + 1)] 
~z ,=~ [½(l-m)]! [½(l+m)]! 

2" 1 

x 1 + (~,Zff)f; :  z dco' (60) 

The prime over the second summation means sum over 
all odd m's, when l is odd, and over all even m's 
(starting with 2), when l is even. 

Then the self-structure factor assumes the following 
form: 

S~(q, t )=-  r0 .... A l+B/ ro  
ro + rl 1 - A B/r0rl 

h 1 + A / q  
+ ..... B ..... +c.c. 

rl + ro 1 - A B/r0rl 
1 { ro A(I+B/r0)  _ _  --  . . . . . . .  

l - AB/roh  ro+r t  

+ r~_ ...... B ( l + A / r x ) ~ + c . c .  
"q +'2o ] 

-- { TI 1 ro A +  . . . . .  B 
- i - -  AB/roh  r o  + 2" 1 T O + 7 1 

2AB } 
. . . . .  +c .c . .  (61) 

+ r o + q  

The term in brackets of tile preceding equation shows 
that the true physical situation can be described by a 
mixture of the extreme cases occurring when either 
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to>> rt or l- 1 >~ "C 0. The transition terms between the two 
phases of motion are represented by the third term in 
brackets and by the factor before the brackets. 

The doubly differential cross section assumes the 
following form: 

d20"incoh K.,. 1 { to___ A 
-dEd(,) = Na,.~oh Ki-h 1 - A--BTrozz _-to + rt 

.__ 2AB } r~ _ B +  . . . .  +c .c . .  (62) 
+ z0+r~ z0+r t  

The results obtained for the doubly differential cross 
section after substitution of the explicit values of A 
and B, is extremely complex and the chance of ob- 
taining a result of some physical transparency is small. 
The cross section so obtained contains all the basic 
components in the scattered-neutron spectrum of a 
homogeneously oriented nematic liquid crystal present- 
ing orientational fluctuations but not density fluctu- 
ations (the centre of mass of each molecule of the liquid 
crystal is stationary), and in absence of any external 
magnetic or electric field. The cross section (62) involves 
the basic idea that during the time ro the molecule per- 
forms librations around a fixed direction, and during 
z~ it performs both rotational diffusion and free rota- 
tion, while the centre of mass of each molecule remains 
stationary. 

When explicit expressions (55) and (59) for A and B 
respectively are substituted in equation (62), the terms 
of (62) can be grouped essentially in four terms after 
some quite elementary, even if lengthy, calculations: 

d 2 G i n c o h  Ks 
dEdo) = Nai.¢oh K ~  {At(y,f ,  oa, ro, rs,q,n) 

+ A 2(y,f, O), "Co, rt, q, n) + A3(y,f, ~o, "r0, rx, q, n) 

+A4(y,f ,  co, ro, r~,q,n)}. (63) 

The term A~ predicts a quasi-elastic peak of non- 
Lorentzian shape while the remaining terms predict 
an inelastic part determined essentially by three com- 
ponents: the librational term A2 due to molecular 
motion during r0, the free rotational term A3 due to the 
molecular motion occurring during r~ and the rota- 
tional diffusion term A4 due to the molecular motion 
occurring during h.  The near-elastic scattering is 
characterized by a sharp central peak, the width of 
which is determined by a lifetime effect, while the in- 
elastic contribution is concentrated quite close to the 
sharper quasielastic peak. 

In order to simplify expression (63) and bring out 
the basic physics, we will discuss simplifications of 
(63) from the point of view of 'good' and 'bad'  resolu- 
tion measurements. 

5. Good and bad-resolution measurements 
of cross sections and linewidths 

The near-elastic scattering is characterized by a sharp 
central peak, the width of which is determined by a 

lieftime effect. The rotational motion produces an 
inelastic contribution, which may be concentrated 
quite close to the sharper quasi-elastic peak, as seen 
on an energy scale, a time-of-flight scale or an angular 
scale. 

The estimated width of the inelastic rotational 
spectra is, say, of the order of I0 tz s -~ or about 1 meV 
and the width of the central quasi-elastic peak of the 
order of 10 it s -~ or about 0.1 meV, for a MBBA homo- 
geneously oriented liquid crystal. 

For free rotation as well as for rotational diffusion, 
the corresponding inelastic-scattering term consists of 
a series of terms beginning with l=  I, as shown by 
equations (50)-(60). For bad-resolution measurements, 
terms with l>  2 may influence the width of the central 
quasi-elastic peak, so that the inelastic and quasi- 
elastic peaks are not separated. Only one broadened 
peak is observed, whose width is determined by a 
weighted sum of the narrow quasielastic peak and the 
broader inelastic rotational spectrum. The importance 
of good resolution in experiments aiming at a study 
of the rotational effects in homogeneously oriented 
nematic liquid crystals is obvious. 

Useful quantities, which may be tested experi- 
mentally are the angular variation of the intensity of 
the quasi-elastic and inelastic peaks. The ~o integration 
of the quasi-elastic peak, term At of equation (63), and 
the inelastic peak, terms Az, A3 and A4 of equation 
(63), according to equation (63) may be carried out in 
closed form and are given by: 

/(q)q.el. 
2 ro exp (-- 2Wv) + Zl[y~(qrd)+(l--y)jo(qra) 2] 

= alnco h 
r o  + Z l  

(64) 
for the quasi-elastic peak, and 

l(q)lnel. 
_ 2 zl exp ( - 2 W v )  [ 1 - y ~ ( q r a ) - ( l - y ) j o ( q r , )  2] 
- -  ainco h - ._ 

T O + T 1 

(65) 
for the inelastic peak. 

Formula (64) predicts that, if the libration is dom- 
inating, i.e. ro>~rl, the intensity is given by: 

I(q)q.el.-- aineoh2 exp ( -  2 Wv) (66) 

whereas, if the rotation is dominating, i.e. rt >~ r0, it is 
given by: 

I(q)q.e,.=aZjn¢oh [y~u(qrd)+(l --y)jo(qrd)2]. (67) 

As the variation of I(q)q.el. is quite different in the 
two cases, these formulae can be compared with experi- 
ments without difficulty. Up to now very few cold- 
neutron-scattering experiments on liquid crystals have 
been performed. However some comparisons of the 
theoretical results with experiments can be done. In 
effect, recalling equation (42), we have for Wv: 

2Wv=q27(O)v j 2 .2 =~,q Q v) (68) 

A C 2 9 A  -- 8* 
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which follows from an analogy with solids; (rZ~) is the 
mean-square radius of the fully developed thermal 
cloud in the librational motion. Now it has been experi- 
mentally found by Dimic, Barbic & Blinc (1972) that 
the intensity of the quasi-elastic peak at different 
scattering angles for cold-neutron scattering in a 
MBBA liquid crystal is governed by a single exponen- 
tial: 

/q2(r2)\ 
I (q)q .e l .=A exp~ 6 )" (69) 

Substituting equation (68) in equation (66) leads to 

q2(r~) 
l(q)Q.el. 2 exp - : dlnc°h 6 (70) 

Comparing equations (70) and (69), we can conclude 
that in the experiments performed by Dimic, Barbic 
& Blinc (1972) the libration dominates. In this limit, 
i.e. to>> r~, the quasi-elastic peak reduces to: 

_ ainCoh . r_ 1 LdEd~Jq.~t.-  zr Ki r0 exp ( - 2 W v )  

1 - ~(qrd) exp ( - 2 Wv) 
X 

[1 - ~u(qra) exp ( - 2 Wv] z + co2r z " 
(71) 

quasi-elastic peak, reduces to: 

aincoh , [ : 
L dEde)J ~.~l ~ K i  

x exp (-2Wv)[(_l_-._y)rl 3jl(qre) 2 I +°° ho' . . . . . . .  

k "CO -~- 7~1 7[ _ ,~ 2 K . T  

r ldO) '  
x exp ( - i co '~ /2K,  T) -j +(0)---~;)-2r ) 

+ Yrx 3jl(qre) 2 (I +2D,  rl)rl ] 
r0+r l  zr (1 +2D~rl)2+o2r 2] " (76) 

The first term of equation (76), which can be easily 
integrated if the quasi-elastic central peak may be 
approximated by a 6 function, describes a Maxwellian 
type distribution on each side of (,)=0, the separation 
of maxima being: 

2f2 = 2( K~j T/ I) '/2. (77) 

The second term describes a Lorentzian distribution of 
width" 

Aco = 2(lira + 2Dr). (78) 

Once again it results quite clearly that line-width 
studies carried out in various cold-neutron-diffraction 
observations on homogeneously oriented nematic li- 

This cross section is of Lorentzian shape and the full 
width at half maximum is defined by" 

A o ) :  
2 

To 
[ 1 - ~ , ( q q )  e x p ( - 2 W v ) ]  . (72) 

The limiting behaviour at small and large q values is" 

(r~) + 2r~ 
Ao) ..... ~- ........ q2 (73) 

q-+0 3r0 

2 
A<o ~- (74) 

q--coo  -r 0 

On the other hand, if rotations dominate, i.e. 
r~ >> r0, the quasi-elastic peak reduces to 

l ( q )q .e l .  

3 

2 

:1 

0"5 
r o ~ (1 -y ) ' r~  

/ 

0.2 t To ~ (1 --Y)T1 

t TO- VT~ 
0"1 TO < YT 1 

I I I I I I ' 

1 2 3 4 5 6 q2(A 2) 

Fig. 2. Intensity, l(q)q.e~., of  the quasi-elastic peak vs. q2 for 
various ratios ro/r~ and for y = 0 . 9 ,  k ibra t ion  is supposed 
to occur during to, free rotation during yrl and diffusive 
rotation during (I -y)rl.  

d incoh  [_._<1.2,, 1 _ K, 
LdEd(~JJ q.e,. zc Ki rt exp ( - 2 W v )  

1 - [yq/(qra) + ( 1 - Y)jo( qq)2] exp ( - 2 Wv) 
X . . . . . .  

{ 1 - [y~u(qra) 92(~--- Y)jo(qre) 2] exp ( - 2 Wv) }2 + ~,)2rZ" 
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The inelastic contribution is due to the contribution 
of the free rotation as well as of the rotational diffusion 
and the corresponding inelastic scattering term con- 
sists of a series of terms beginning with l=  1. If we 
consider only the term l=  1 and neglect the other 
higher terms (this neglect is legitimate in the case of 
good-resolution measurements) the inelastic peak, 
which may be concentrated quite close to the sharper 

l ( q )q .e l .  
3, 

2 .  

0"5 

To>YTI 
0"2" TO = YTI 

TO := (I --y) "r, 
0"1" To< ( l - -Y)  T1 

I I I I | I ~ . _  

2 3 4 5 6 q2(A 2) 

Fig. 3. Intensity I(q)q.e,. of  the quasi-elastic peak cs. q2 for 
various ratios ro/rt and for y=0.1. Libration is supposed to 
occur during r0, free rotation during yrj and diffusive rota- 
tion during (1 -y)zl. 
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quid crystals may have different meanings depending 
on the relative values of z0, r~, Dr and ,(2. The relative 
values of r0 and ri in a homogeneously oriented ne- 
matic liquid crystal depend upon the shape of the mol- 
ecules and the nature of the intermolecular forces. It is 
to be expected that r~ < ro for long molecules sensitive 
to anisotropic forces or for strongly bound molecules, 
that r ~ r 0  for molecules of intermediate length or 
more loosely bound molecules, and that ri >r0 for 
spherical molecules or weakly bound molecules. 

If rl were of the same order of magnitude as D;. 1 or 
.Q-l. the quasi-elastic peak would be determined by 
the relative magnitude of r0 and r~. If rl -> r0 the width 
of the quasi-elastic peak would be of the order of 1/r~ 
( ~  Dr or .Q), and therefore it would be so wide that it 
could not be separated from the broader inelastic 
rotational spectrum, regardless of whether the rotation 
is free or diffusive. If r0~r l  the width of the quasi- 
elastic peak would be determined by ro 1, and the 
broader rotational inelastic spectrum would not be 
observed because its area is determined by the ratio 
2-l/TO. 

If log l(q),.¢~, is plotted as a function of q2 assuming 
a case described by equation (64): 

l( q)q.¢l. 
_ 2 r0 exp (--2Wv)+2-~[y~'(qrd)+(l --y)./o(qrd) z] 
- -  a i n c o  h . . . . . . . .  

*Co+ T 1 

a set of curves as given in Figs. 2 and 3 is obtained 
when the ratio 2-0/rt is varied between the limits 0 and 
co, for fixed values of y. It is also assumed that 2 Wv = 
ll2q 2 with u2=0"5/k 2 and rd=3 ]~. It was assumed that 
only one distance r,~ of the scattering nucleus from the 
molecular centre of mass exists in order to bring out 
clearly the basic physics. In most nematic liquid crys- 
tals several values of rd are involved, which means that 
the general tendency of l(q),.~.,  as shown in Figs. 2 
and 3, will remain even if its marked structure is lost 
upon summation of several terms. 

The slope of the curves l(q)q.~t, of Figs. 2 and 3 at 
the origin is obtained from a series expansion of equa- 
tion (64): 

l(q)q.cl. 
2 (1 roUZ+rlyr~/3+(l-y)rtr4qZ/36qZ)) 

= a i n c o  h - -  2"0 + 2" 1 . . . . .  

as q-+0. (79) 

We will remark that the slope of the curves I(q) at 
the origin does not depend on the contribution of the 
term (l--y)jo(qra) 2. The slope varies from - u  2, if 
2"0>~2"1y to -r~/3, if rly~2"0. 

If 2"0 and 2"1 interchange their roles over the meso- 
phase range, a characteristic variation of this slope as 

a function of the temperature is expected. The ex- 
pected magnitude of the slope for a M BBA liquid crys- 
tal molecules in the nematic-liquid phase varies from 
0.06 to 0.2 A 2 to about 2.5--~ 3 A 2 in the isotropic-liquid 
phase. The physical meaning of these findings is clear: 
in the nematic-liquid phase the homogeneously 
oriented molecules perform librations; the amplitude 
of these librations increases steadly over the whole 
nematic-liquid range, and near the isotropic-liquid 
phase the molecules have great probability of rotating 
freely. It is of particular interest in this connexion to 
study the slope of the curves of log l(q) vs. q2 for small 
q values according to equation (79) for a M BBA liquid 
crystal homogeneously oriented. The variation of the 
intensity of the elastic peak is completely dominated by 
the motion of alkyl end chains. Equation (79) predicts 
that this slope varies from very small values of about 
0"06 A 2 in the nematic-liquid range just below the solid 
phase to values of about 0.2 ,~,z just above the isotropic- 
liquid phase. The alkyl end chains are thus bound and 
perform librations just below the solid phase, whereas 
the probability of rotational motion increases when the 
isotropic-liquid phase is reached. 

6. C o n c l u s i o n  

We have presented a rather general formulation of 
the cold-neutron incoherent scattering by a homo- 
geneously oriented nematic liquid crystal, showing 
fluctuations in orientation, allowing various models 
for molecular librational motion, as well as rotational 
motion (free and diffusive rotation) to be tested against 
experimental facts. In this paper the rotational motion 
has been assumed to be composed of both rotational 
diffusion and free rotation. 

It is believed that the main features of several 
scattering experiments on homogeneously oriented 
nematic liquid crystals may be understood on the basis 
of the formulae presented, whose usefulness has been 
discussed also from the standpoint of bad and good- 
resolution measurements. 
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